Nonexistence and existence results for a fourth-order p-Laplacian discrete Neumann boundary value problem∗
نویسندگان
چکیده
In this paper, a fourth-order nonlinear p-Laplacian difference equation is considered. Using the critical point theory, we establish various sets of sufficient conditions of the nonexistence and existence of solutions for Neumann boundary value problem and give some new results. The existing results are generalized and significantly complemented.
منابع مشابه
Nonexistence and existence results for a 2$n$th-order $p$-Laplacian discrete Neumann boundary value problem
This paper is concerned with a 2nth-order p-Laplacian difference equation. By using the critical point method, we establish various sets of sufficient conditions for the nonexistence and existence of solutions for Neumann boundary value problem and give some new results. Results obtained successfully generalize and complement the existing ones.
متن کاملExistence and nonexistence of positive solution for sixth-order boundary value problems
In this paper, we formulate the sixth-order boundary value problem as Fredholm integral equation by finding Green's function and obtain the sufficient conditions for existence and multiplicity of positive solution for this problem. Also nonexistence results are obtained. An example is given to illustrate the results of paper.
متن کاملExistence of positive solutions for a second-order p-Laplacian impulsive boundary value problem on time scales
In this paper, we investigate the existence of positive solutions for a second-order multipoint p-Laplacian impulsive boundary value problem on time scales. Using a new fixed point theorem in a cone, sufficient conditions for the existence of at least three positive solutions are established. An illustrative example is also presented.
متن کاملExistence and uniqueness of solutions for p-laplacian fractional order boundary value problems
In this paper, we study sufficient conditions for existence and uniqueness of solutions of three point boundary vale problem for p-Laplacian fractional order differential equations. We use Schauder's fixed point theorem for existence of solutions and concavity of the operator for uniqueness of solution. We include some examples to show the applicability of our results.
متن کاملTriple positive solutions of $m$-point boundary value problem on time scales with $p$-Laplacian
In this paper, we consider the multipoint boundary value problem for one-dimensional $p$-Laplacian dynamic equation on time scales. We prove the existence at least three positive solutions of the boundary value problem by using the Avery and Peterson fixed point theorem. The interesting point is that the non-linear term $f$ involves a first-order derivative explicitly. Our results ...
متن کامل